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GENERALIZING THE WAVE VARIABLE METHOD TO MULTIPLE
DEGREE-OF-FREEDOM SYSTEMS

I. INTRODUCTION

One of the tasks of the project was to do a literature survey. Various articles were examined,
including references [l]-[6]. We examined in detail some of the work done by Wayne Book and
Sahgir Munir at Georgia Institute of Technology. In their work, they generalized the wave
variable method to multiple degree-of-freedom teleoperation systems by replacing the damping
-coefficient in the standard wave variable method with a set of scaling matrices. In the following,
we will derive a more general set of scaling matrices. In the next section, we review the single
degree-of-freedom and multiple degree-of-freedom systems. In Section III, we derive, a larger
family of scaling matrices and verify that an important subset of scaling matrices results in stable
operation of a multiple degree-of-freedom teleoperation system with a fixed but unknown time
delay. We then determine the relationship between the extended family of scaling matrices and
the family proposed by Munir and Book. Section IV contains a simulation to illustrate the
concepts and Section V contains the conclusions.

H. THE WAVE VARIABLE METHOD FOR MULTIPLE DEGREE-OF-FREEDOM
SYSTEMS

The wave transformation relations are given by
u.,(t) u= u (t - T)(1

v (t) =v, (t - T).

The wave transformations for the left wave junction are given by
bO,. (t) + r,, (t)

u4(t)- (2)

b 0,r (t) - r"., (r)' vm (t)'=

and that for the right wave junction are given by
u•()=bO,,,,(t) + tpd (t)

S1(3)

bO,,, (t) - rp, (t)vS (t) = 4•

Although the strictly positive parameter b can be chosen arbitrarily, it defines a characteristic
impedance associated with the wave variables and directly affects the system behavior [5].

Equations (2) and (3) are for 1 DOF systems. To implement the wave variable method on a
system that has more than one degree of freedom, the equations for the transforms must be
generalized. Niemeyer and Slotine [5] suggest making b a positive definite matrix. Munir and
Book [2]-[4] recommend a more general formulation by writing the transformation equations
from before as

u .(t) Aw'm (t) + B w-r (t) (4)

V7 (t) = C"• (t) - DW.T,,d (t)

and



v,, (t) = Ci .,, (t) - Dir,,, (t) (5)

u, (t) = Ai. (t) + B, r,,1" (t)

where A,, B,,, C,,, and DI, are nxn scaling matrices and n is the number of degrees of
freedom of the teleoperation system. These matrices cannot be chosen arbitrarily; it is necessary
to determine conditions for the scaling matrices to guarantee passivity [6]. To accomplish this we
will define the power-flow at each side to be

0, T, = 2u,,, - 1U 2 Vlvill (6)

for the master side and
. 1 2u- u T +y2* 7

for the slave side. Substituting equations (4) and (5) into equation (6) or (7), expanding, and
matching matrix coefficients yields the requirements

AVA W C(8)
B, D TD,

and also that
BI (2ADB,, + . (9)

1=/l 2(2 '~ + 2CwD,,)

Munir and Book [2]-[4] derive conditions on A, and Bv to ensure that (8) and (9) are satisfied.
In particular, they note that the scaling matrices must be nonsingular and consider the special case

A l = C , (10)

BV = DIV
so that equation (8) is satisfied. Using this relationship, equation (9) reduces to

I=2AwB,. (11)
Munir and Book then restrict A,, to be symmetric but not necessarily positive definite and prove
that the resulting family of scaling matrices results in a stable system by showing that passivity is
ensured using the norm of the scattering matrix.

Although this is more general than what was proposed in [5], because of the specific choices
made, only a restricted class of scaling matrix is determined. In this article, we will extend the
family of scaling matrices that result in stability and discuss the significance of this extension in
terms of the wave variables themselves.

III. DERIVATION OF A LARGER FAMILY OF SCALING MATRICES

To extend the family of scaling matrices originally proposed by Munir and Book, we will first
derive the whole family of matrices satisfying (8) and (9). From equation (8) it is clear that AW
and CT have the same column space and that B,. and D,,. have the same row space. This
observation along with equation (9) implies that all four scaling matrices must be nonsingular.
Since all square root decompositions of nonsingular square matrices such as those given in (8) are
related by pre-multiplication by an orthogonal matrix, it follows that

C. =Q,A. (12)

D. = Q2B.
where Q, and Q2 are n X n orthogonal matrices. Now this is not enough to guarantee that (9) is
satisfied. We will say that A,, and B. are compatible with respect to (8) and (9) if there are

orthogonal matrices Q, and Q2 so that A,,,, Bw, C,, = QA,,, and D,, =Q 2B,, satisfy (8) and (9).

2



Substituting (12) into (9) and performing the required manipulations gives the following
necessary and sufficient condition for A. and B, to be compatible in this sense:

AwB T + BwA T =I. (13)

With some algebraic manipulation, it can then be shown that the characterizing condition for A,,,

B.,, C,., and D,, to satisfy (8) and (9) is that the following hold:

1. A. is nonsingular.

2. B, = 12 (I+S)A -T where S is any nxn skew-symmetric matrix.

3. C, =QA. where Q is any nxn orthogonal matrix.

4. Dw,=Y 2 Q(I-S)AJ.

Note that these four conditions guarantee that all four matrices are nonsingular.
Next, we identify a subfamily of scaling matrices that result in stable operation. To do this, we

need to determine the scattering matrix. The transfer function for the input-output relationship
across the communication link can be shown to be [2]

[(I - e-2.Tr) B-A -2e-" T

Gw (s) = 1 + e 2I- ..... 1 + (14)
2e-"T (1- e-2.,T) A

L -+ e1 + e_2.,sT AtI Bv

Setting s = jco and simplifying gives

FB-'A tanh(jwT) -sech(jOT)1 (15)

')[ sech(jaoT)l A,-,'B,. tanh(jo)T)(1
Passivity can then be demonstrated using the scattering matrix

S(jto) = [G,,(jo) - I][G,,.(jw) + I]-. (16)
While calculations involving the inversion of partitioned matrices are generally difficult to do in
closed form, (15) has enough mathematical structure to allow this. It can be shown that the
expression for S(jo)) is

[M - I] sinh(joiT) D(jafT) (17)
2M - - I] sinh(joT)j

where M = B-Aw and where D(jaiT) is given in block diagonal form as

D(jcoT) = diag(Do (jwT), D,, (jaiT)) (18)

with
D,, (joT) = [2M cosh(j]T) + (M 2 + I) sinh(jwT)V-. (19)

Since the calculation of Do(jo)T) requires a matrix inversion of

K, cos(of )+ jK2 sin(aff) (20)

= 2M cos(aff) + j[M2 + I]sin(ofT),
it must be shown that (20) is nonsingular for all co. This verification for the whole class of
scaling matrices satisfying (8) and (9) requires more work than the subfamily proposed by Munir
and Book [2]-[4]. The approach we have taken is to show that (13) imposes restrictions on the
eigenvalues of BI'A1 that preclude (20) from being singular. This was done by showing that if

(20) is singular then Bw'Aw, necessarily has an eigenvalue with zero real part. However, it can be

shown that for our family of scaling matrices the eigenvalues of B,)At,, necessarily have positive

real parts.

3



Now if (20) is singular then so is its product with its complex conjugate:

[K, cos(woT) + jK 2 sin(aoT)][K, cos(oT) - jK 2 sin(WoT)] (21)
= K1

2 cos 2 (off) + K2 sin 2 (WoT) + j[K 2K, - KK2 ]sin(roT)cos(wT)

= sin2 (wT)(BJ'A,,) 4 +[2+2cos 2 (rT)](B,-'A3.)2 +sin2 (WoT)l.

Note that the resulting imaginary part is zero precisely because K, = 2M and K 2 = M 2 + 1
commute; otherwise (21) would be complex. We will show that this matrix is nonsingular and in
the process prove that (20) is also nonsingular. If sin(toT)=0 then (21) becomes 4(B-'Aw,)2

which is nonsingular. Suppose that sin(a/T) 0. In order for (21) to be singular at least one of

the four roots of

p(A) = sin 2 (wT)Z 4 + [2 + 2 cos 2 (tT)]22 + sin 2 (toT) (22)

must be an eigenvalue of B-'A,,. The roots of this polynomial (which is a quadratic in ,2 ) are

given by

A=±-22cos2(tT)±+(2+ COS2 (WT)) 2-4sin 
4 (tOT) (23)•2 2 sin 2 (tOT)

Since (2+2cos 2(coT)) 2 dominates 4sin 4 (wT), the inner square root is real. Furthermore,

- 2 - 2 cos 2 (oT) dominates the inner square root so the number inside the outer square root is
real and nonpositive. Therefore, the roots of p(2 ) are purely complex (i.e., have zero real part).

Now the A,, and B. matrices satisfying (8) and (9) also satisfy (13). Because Aw, and B,, are

invertible, (13) can be written as B-'A,1 T B-T = -I -T

BAW +AVB I=BV BIV. (24)

This says that the symmetric part of B-'A,,, is positive definite implying that the real parts of the

eigenvalues of B,'A,A are strictly positive so that none of the eigenvalues of B-'A,, are roots of

the polynomial p(2 ). Therefore (20) is nonsingular implying that D,(jo)) is well defined.

Munir [2] demonstrates that the system is stable for their family of scaling matrices by showing
that the norm of the scattering matrix

ISV = sup V2(S (ja.So(jWo)) (25)

is equal to I where S*(jto) denotes the complex conjugate transpose of S(jto). This was done
by showing that

S (j*)S(jo) = 1. (26)

However, for this calculation to work out, it must be assumed that M = B,-'A, is symmetric,

which is true for the scaling matrices in [2]-[4] by the symmetry of A,, along with equation (11).

If we constrain the family of matrices derived earlier that satisfy equations (8) and (9) to have
the property that B-'A, is symmetric, the same calculations used by Munir [2] to ensure passivity

for his family of scaling matrices would apply to give (26) for our constrained family of matrices.
This will of course reduce the size of our family of scaling matrices. To see this, note that

B.-'A,,= [ 2 (I+S)AT ]-A,.=2A,(I+S) 'A,. (27)

Now BV'AV, is symmetric if and only if its inverse is. This inverse is given by
(Bn'AV)-' =Y2XA4'(I +S)A-T =12 A-'A- T + I2 A,-'S• T . (28)

4



The matrix IAIA-T is symmetric while the matrix IA-ISA-T is skew-symmetric so in order
Y2 W~ W Y2IV ,

for (28) to be symmetric we have that S = 0. This is the necessary and sufficient condition for

BV' A,•, to be symmetric for the class of matrices satisfying (8) and (9). Thus the following family

of scaling matrices can be used for applying the wave variable method to a multiple degree-of-
freedom system:

1. A, is nonsingular.

2. B,, = 12 AT.

3. CI, = QA,, where Q is any n x n orthogonal matrix.

4. D = I2 QAT.

Note that setting A,, = b2 and Q = 1 for the scalar case results in exactly the same solution as
V2

(2) and (3).

Since choosing a set of scaling matrices requires the selection of an n x n nonsingular matrix A,,

and an nxn orthogonal matrix Q, there are a total of n2 +n(n-1)/2 = 3n2 /2-n/2 degrees of
freedom in choosing the scaling matrices. However, because the collection of scaling matrices
presented in [2]-[4] are uniquely defined by the selection of a single symmetric matrix A,, the

family of scaling matrices in [2]-[4] is only n(n + 1)/2 -dimensional.

It is then natural to ask how this extension of the scaling matrices affects the wave variables.
To see this, we first consider the effect of Q. The v wave variables are given in equations (4) and

(5). Substituting in the expressions for C, and DIV yields

v,, (t) = QAwO,,, (t) - 1 2 QA,-,, ,t (29)

= Q[A,,.,, (t) - Y2 A)-,TrT,, (t)],

which clearly demonstrates that Q merely applies an orthogonal transformation to the v-variable,

i.e., it will merely rotate and/or reflect the v-variable. The same holds for v.,(t). This will clearly

have no effect on the power flow equations (6) and (7).
Next, consider the effect of allowing the. matrix Av to be nonsymmetric. There is a well-

known result in matrix theory called the polar decomposition that states that any square matrix
M can be written as a product M = PUT where P is a symmetric positive definite matrix and
U is an orthogonal matrix. Setting M = A' gives that A1v = UPwF for some suitable orthogonal

matrix U and symmetric positive definite matrix P",. The u wave variable then becomes

u., (t) = QP'WA, (t) + 12 (Qp)T (t) (30)QIP"A' (tt)y
- Q[Pw1 9,, (t) + 1/2 P"7Tr," (t)]

so that the u -variable is merely rotated and/or reflected. A similar statement holds for the v -
variable.

IV. SIMULATION RESULTS

The performance of the wave variable method was tested using a 2 degree-of-freedom linear
model. The equations of motion for both the master and slave manipulators were given by

T,, = J., + B0 (31)

5



where -r ,d is the input torque, j, is the desired 2x2 constant symmetric positive definite inertia

matrix, and B, is the damping matrix with the same qualities as J,. With the wave variable
parameters and the equations of motion necessary to complete the system, we can simulate a 2
degree-of-freedom bilateral teleoperation system.

As can be seen in Fig. 2, the behavior of the linear 2 degree-of-freedom slave is similar to the
behavior of the master. In this simulation, the input torques were 3 and -4 N-m, respectively. The
slave manipulator was able to match the performance of the master manipulator with respect to
torque, position, and velocity. Also, in less than 4 seconds the output torques had reached their
steady state values. Due to the nature of the wave variable method, it can be shown that the
system will stabilize for any amount of constant time delay.

Mat Save

0 8 10 0 2 4 6 8 Io

2.2 .. .... ... ! ..... ... .. i... .... ... .. .... .... • ... . o • ... .... ................ ....... ........... .... i ..... ...
So• • ....... .. ........ .2 ....... .... ...... ...

40 2 4 6 8 i0 40 2 4 6 8 tO

0. 0.-
o • .. .... i . ............ ... .... i . ..... ... S 2 ., - ....... .i ... ...... .. ....... . ... : .. ........ .

" 4 .2 ........... ........... i............. ............. i . . . . .. . .............. ... .40 . .. . .. . . . . ... .... i .. ....... .-0 - - - - -- - -__ _

.0.
6 8 i0 0 2 8 6, B 10

... .. .i e.. _ _-

Fig. 2: The response of a 2-DOF system with a 2T = 1 sec total time delay.

010 , ,

00- 
-------- -- --------

.'%.1 -0 .. - - -- - , ,- o- ow Mad o-- o\ DA

Fig. 3: A plot of the wave variable v, for the.2-DOF teleoperation system for two different Q

matrices.
Fig. 2 represents the simulation results for a given fixed A. where Q is allowed to be any

orthogonal matrix. No matter which Q is used, the overall system output will not change. What
doo zhange are the wave variables that are sent across the communication line. Fig. 3 shows a plot
of the wave variable v., for the cases when Q is the identity matrix and when it is a rotation

6



matrix corresponding to a rotation of 45 degrees. The figure clearly shows that vi will be rotated

by the same amount that C,, and D. are. Also, when looking at p,, =UT A,,, which is a rotated

version of A ,, the same statement from before can be made again. This time however both u,,

and v, will be rotated, and again there will be no change to the system output.

V. CONCLUSIONS

In summary, we have presented the derivation of an extension of the wave variable method to
multiple degree-of-freedom systems. We have shown that the collection of scaling matrices
determined in [2]-[4] to preserve passivity is not complete and have determined a larger family of
feasible scaling matrices. We have also shown how the new scaling matrices relate to those
proposed in [2]-[4].
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